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Propagation of an electromagnetic pulse through a waveguide with a barrier:
A time domain solution within classical electrodynamics
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An electromagnetic truncated Gaussian pulse propagates through a waveguide with piecewise different
dielectric constants. The waveguide contains a barrier, namely, a region of a lower dielectric constant com-
pared to the neighboring regions. This setup yields a purely imaginary wave vector in the region of the barrier
(“electromagnetic tunneling). We calculate exactly the time-dependent Green’s function for a slightly sim-
plified dispersion relation. In order to observe the plain tunneling effect we neglect the distortions caused by
the waveguide in obtaining the transmitted pulse. The wave front of the pulse travels with the vacuum speed
of light. Nevertheless, behind the barrier, the maximum of the transmitted pulse turns up at an earlier time than
in the case without a barrier. This effect will be explained in terms of the energy flow across the barrier. The
solutions obtained reproduce the shape of the pulses measured in the tunneling experiments of Enders and
Nimtz [J. Phys(France | 2, 1693(1992; Phys. Rev. 8, 632(1993; Phys. Rev. B47, 9605(1993; J. Phys.
(France | 3, 1089(1993; 4, 565(1994]. [S1063-651X%96)05711-X]

PACS numbsg(s): 03.50.De, 73.40.Gk, 03.40.Kf

[. INTRODUCTION real wave numbek outside the barrier, but on entering the
tunnel region with a lower dielectric constaktbecomes
Tunneling, like interference, is a characteristic property ofimaginary and the wave will spatially decay.

waves. This effect occurs both in nonrelativistic quantum In this paper we will consider the electrodynamic tunnel-
mechanics and in electrodynamics. Although the time-ng for a barrier given by a variable dielectric constant. This
dependent differential equations of both theories are fundasetup is amenable to a rigorous mathematical description. It
mentally different in their structure, theoretical calculationswas theoretically investigated by Martin and Landal@&k
yield analogous results for the traversal time of the maxi-They concentrated on the tunneling of a Gaussian pulse with
mum of a wave packet's modulus. These calculations ara narrow frequency range. Using a scattering ansatz they
based on the stationary-phase approximajtiod] as well as  showed that the time delay of the center of mass depends
on a scattering ansaf3]. For sufficiently long barriers, the only on the frequency derivative of the phase of the trans-
time delay is independent of the thickness and thus can comission coefficient. For sufficiently long barriers, this delay
respond to arbitrary large effective velocities of the maxi-becomes independent of thickness and thus corresponds to
mum of a pulse for crossing the barrier. This prediction is inan arbitrary large effective velocity of the center of mass for
agreement with results obtained by Nimtz and Enders in tunerossing the tunnel region, which is known as the Hartman
neling experiments with evanescent microwaves in a waveeffect [1] and has been experimentally verified by Enders
guide with a frequency below the cutd#—8]. In these ex- and Nimtz[5].
periments the evanescent waveguide region, i.e., the barrier, We want to examine how this effect is related to causal-
is realized by an undersized region in between normal sizeily. To carry out this goal, the fundamental solution of the
regions of a waveguide line. Due to the inhomogeneougiven setup, the retarded Green’s function, will be con-
cross section of the waveguide, we could not obtain an anastructed analytically assuming causality. This means that this
lytic expression for the transmission coefficient. Therefore, gunction vanishes outside the past light cone, i.e., the wave
recent microwave experimef®] studied a barrier produced front travels with the vacuum speed of light. With the aid of
by a low-dielectric-constanteg) region, which was placed this solution we will give an analytic expression for the en-
in a rectangular waveguide of the same cross section, filletire transmitted pulse, which has the observed superluminal
with a higher dielectric constant,. This experimental setup
is illustrated in Fig. 1. The relation between wave number _ '
k and frequencyw is given by the dispersion formulavith <ta o>
the vacuum speed of light set to=1) ' '

k= \/E\/wz—wgle, (1.1

wherew, represents the cutoff frequency of the empty wave-
guide ance is the variable dielectric constafi0]. Therefore
a wave of frequency with 02/ e;< w3< w?/ e, possesses a

€1

*Electronic address: te@thp.uni-koeln.de FIG. 1. Setup of the considered waveguide.
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property of the center of mass. In addition, this allows us towhere[d= 95— 35— 95— d5 is the Laplace-Beltrami operator
determine the deformation of the pulse caused by crossingf the Minkowskian space timgl2]. Beyond that Gy must
the barrier. It is assumed that the initial pulse is given by aallow for the following boundary conditions: First, it has to
truncated Gaussian wave packet located only to the left ofanish outside the past light conexatand second, its six
the barrier. components have to jump in the respective correct manner at
the two boundaries between the propagating and the evanes-
cent region and must take into account the metallic boundary
Il. GREEN'S FUNCTION conditions on the surface of the waveguide. In the next sec-
A. Model tion, we will give a solution of this boundary-value problem
) ) ) , where the axial magnetic compondais, of Green’s func-
The Green's function will be obtained using a Laplacejjon shall serve as example. Given the relevant field compo-

transform. The structure of the dispersion formld) pre-  pents in front of the barrier at the timé@=0, the expression
vents an analytic inversion of this transformation because of

the different coefficients in front ab? outside and inside the o
barrier, respectively. Therefore we consider in this paper a B3(X):f [ijzylEz—folZzEl—folz,oBg]dxldxzdx3
simplified model for the electromagnetic tunneling effect N

with dispersion formulas given by 2.3

k= /w?—mZ, = Jo?—mZ, 21 yields the time evolution of th&; component of the mag-
L 2D etic field behind the barrier®>1/2 in terms of partial de-

rivatives G5, ,, of Green’s function. The three-dimensional
with the e coefficients dropped and the cutoff frequenciesdomain N={xe R*|0<x'<a,0=x*<b,x’=0} of integra-
m;=w./\e; andm,=w./+/e, outside and inside the bar- fion is the interior of the whole waveguide line at time
rier, respectively. The transmission coefficient of the barrier =0-
does not change qualitatively under this simplification. The
model given by these dispersion formulas, together with the B. Analysis
Maxwell equations, still represents an electrodynamic case of
tunneling. Within this model the velocity of a wave front

limy_...w(k)/k=1 Is always given by the vacuum speed of propertyx°>0. The Laplace transform yields, after in-

light and it is assumed that the dielectric medium inﬂuence§lersion a function in the time domain that vanisiesil a
only the cutoff frequencies themselves. A similar model con- o . . ; .

2 X : e certain time is reached. Therefore this method is only suit-
sisting of a classical scalar field that satisfies the onez e 1o get the advanced Green's function. The retarded
dimelnsional rela}ivti)stic Klein-Gordon equa:jtiobn with ar:ect- reen’s function, though, can then be obtainéd by a simple
angular potential barrier was investigate Deutch and. . : ' :
Logv [11]?Under the condition that '[héJ tunneli)rzg amplitudefIme _reflect|on. ' The transformed components of Green's
) . . . unction are defined by
is very small, they found an approximate solution given by a
Gaussian wave packet, which turns up on the right-hand side - ©
of the barrier as if its maximum took zero time to cross the Gnﬁ(w)=£[Gnﬁ]=f e Gy dX°, (2.4
barrier. Our goal here is to find an exact solution of the 0

Maxwell equations yielding exact values for the tunneling L
time of the maximum of a Gaussian wave packet, which cafVNere£ denotes the Laplace transform within the upper

be compared to the approximate results given by Martin an§2!f plane of complex numbers. _ _
Landauer. Furthermore, taking truncated wave packets of Of @waveguide with perfectly conducting walls given by
variable variance, the influence of these attributes on the turf’® Surfaces, the boundary condition for the electromagnetic
neling time will be studied. field reads{10]

Suppose that an electromagnetic pulse has been generated - . .

in the region to the left of the barrier by an appropriate cur- (IXE)[s=0, (A-B)[s=0, (2.9

rent that has already vanished before the wave front of the

pulse reaches the left end of the barrier. The propagation ofhereri is the vector normal to the surfage This condition
this pulse is then determined by the dispersion formulas tois satisfied if one uses a Green’s function that is invariant
gether with the Maxwell equations with vanishing chargerelative to the reflections at the four walls of the rectangular
current. One can obtain the propagated field behind the bawaveguide. This invariant Green’s function can be decom-
rier by solving these equations with the pulse located in fronposed into the characteristic modes of the waveguide. The
of the barrier as initial condition. This can be done with theresult for the Laplace transformed components can be written
aid of the retarded Green’s function. In the case of the elecas
tromagnetic field, this fundamental solution can be written as_
an antisymmetric tensdéy,z, («,8=0,...,3),satisfying Gxap
the four-dimensional wave equation with the Dirac distribu- .
tion at the fixed space-time positionas inhomogeneity _ 1 R o 10 mlactxniby) giox g Xx)

2mab, = P Gap X=X,

O0G—=— 6, (2.2 (2.6

We solve the time-dependent wave equati@r?) by a
Laplace transform relative to the timé for a fixedx with
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introducing the antisymmetric tensor with the total antisymmetric tenset,;. The wave numbers
_ _ k and « are given by the dispersion formulé2.1). Due to
0 IC1S; 1S1€2  —$1S; the upper half plane analyticity of a Laplace transformed
—icyS, 0 CiC,  iC1S, function, the square roots in these equations have to be cho-
fap=| . B . , (2.7 sen analytic in the uppes half plane. Hence the wave num-
1S1C2 €12 0 1S1C2 bers always have a positive imaginary part. The respective
$1S,  —iC1Sy —iS4Cy 0 coefficientsR 5, A,s, B,g, and T,z are uniquely deter-
mined by the boundary conditions at the two planes defining
with the evanescent region betwert= —1/2 andx3=1/2. The
R R coefficients of both solutions are assumed to be equal be-
cypi=codx umla), spi=sinx“umla), (2.8 cquse of the symmetry of the barrier relativexfo=0. Tak-

ing into account that the imaginary part lofis positive, the

. v 2 C— o v 2
c,i=cogx“ymlb), s,:=sin(x*pm/b). (2.9 asymptotic behavior of the two solutions looks like

This tensor desc'ribes the a_ndx2 erendence of the modes lim ¢(052,§(X3):0, lim ¢511lg(x3):0_ (2.14
represented by its respective pairs of numbers). Here B N

we have introduced a one-dimensional Green’'s function

'g“aﬁ(F’,x3) to account for the dependence on the axial co-Therefore we can construct the Green’s function in the upper
ordinatex®. Only this function contains the dependence onw half plane as

the frequency and will therefore define the time evolution of D= «@Dredr =3 o3

the field. Applying the transformed wave equatith? to . . 1 | $ap(X")dgap(X’), x*=x

Eq. (2.6), we find that the one-dimensional Green’s function 9apg(X ™ X") = Wz | 6203 00(x3), X3<x (215

has to be a solution of the ordinary differential equation W Pap api o ’

given by with the WronskiarW,,; of ¢ and ¢'?) defined by
2
02— M2 [T LB X3 = S(x3—X3 _ d¢(al) dd)g)
a9z e m (X%) |Gap(X®,X%) = 8(X°—X~), (2.10 W, 5= 62 dx3ﬁ_¢511/; dxgﬁ_ 216

with the jumping cutoff frequency determined by the simpli-

, : . - Th 3<x3 with x3< —1/2 [x3>1/2 is the inter-
fied dispersion formulag.l), i.e., € casec=x" With X 2 andx /2is the inter

esting one for the investigation of the tunneling time problem
M= o /e X3 =1/2 for wave packets: In this case the Grgen’s function is suitable
m(x3 :{ 1= %c ’ (2.11) to calculate the field behind the barrier for a pulse assumed
my=w /e, |X3<1/2, to be located initially only in the front of the barrier. In this
case the Green'’s function reads
with .= m+/i?/a®+ 5?/b? for a rectangular waveguide. No-
tice that the cutoff frequencie®m;,; and m, change with the
type of mode. Thus the one-dimensional Green’s function
also depends on the numbeus). In Eqg. (2.10 no bound-
ary terms at zero time emerge from the Laplace transform of We now must consider the respective matching conditions
the second time derivative due to the vanishing of the adfor the components of the electromagnetic field to evaluate
vanced Green’s function fox<x° and the property the coefficients of the two solutions. For simplicity let us
x9>0. look only at the calculations for the componeBj. This
The one-dimensional Green’s function f(2.10 can be component has to be continuous)dt=—1/2 andx3=1/2.
constructed from two linear independent solutions of the corfFurthermore, we need the behavior of its partial derivative
responding homogeneous equation. These can be chosen ggefipendicular to the boundary planes of the barrier. The
plane wave traveling from the left-hand side and the righttransverse componen; andB, are continuous at any po-

~ 1 (W33
Gap (%) = 5o T g0, (2.17

hand side, respectively, toward the barrier, i.e., sition of the two boundary planes. Hence its partial deriva-
tives parallel to the boundary planes, i.e., #teandx? de-
eaﬁe‘k"3+ Raﬁe*‘kxs, x3<—1/2 rivatives, also have to be continuous at these planes. The

(1) 3y — ix3 —ikx® 3 equation diB=0 shows that the® derivative of the com-
Pap(X) A“ﬁe. . TBage - eIl ponentB; is continuous at the boundary planes too. These
Taﬁe'kX . xX3=1/2 four continuity conditions together yield the coefficients of

(212 the corresponding functions!y and ¢{2):

and Rp,=D "' M(1-e?*)(k*~«?), (218

T.ee 0 x3<—1/2 Ago= D 12k(k+ k)€l (<7112, (2.19

(2) 3y _ —inx® i kX3 3 )

() Az - +Baﬁg - [x?|<1/2 By,= — D~ 12K(K— x)el(3x—k12 (2.20
faﬁeilkx +Raﬁelkx y X3>|/2, .

(2.13 T1,=D Y4kke! (1! (2.21)
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with the common denominator

D= (k+ k)2~ (k— k)%~

(2.22

Due to the absence of upper half plane zero® dhe coef-
ficients are analytic in this half plane.

We find the one-dimensional retarded Green’s function in

the time domain after a time reflection. The inverse Laplace

transform yields, fot: =x°—x°=0,

(t_3 3)_ 1 oo+is

th"" (
2w —co+|s

X do,

gaﬁ’ (223

with 9,5(x%x%) given by Eq.(2.17).

In the case of the componeBRt we now have to consider

the transmission coefficielt;, given in(2.21). Note that the
expressiork+ k never vanishes in the upper half plane.

Thus, expanding the right-hand side aR.21) with
1/(k+ )2, we find
4dkk o 1
—ge(" )—2—. (2.29
(k+x) — K eain
K+«

The term k—«)/(k+ ) is bounded in the uppew half
plane by 1 and the imaginary part efis always positive in

5783
_ e iw(3—x3=D)
! f”(w)?m%
t—(2v+1)1\27"1
=®(t—(21/+1)|)(t+(le)l
XJ4,,+2(m0\t _(2V+l) | ), (229)

with the step function®(x) and the vth Bessel function

J.(X).
The additional exponential factor only causes a time
translation. By performing the inverse Laplace transforma-

tion £71 one gets, forq,(t,2)=L"Yf,(o)(w?—md) 1],
with the abbreviatiore=x3—x3>0, the solution
t—z+1—(2v+1)1\27"1
t—z+1+(2v+ 1)l

q,(t,2)=0(t—z—2vl)

X Jg,42(Mo(t—2z+1)2—(2v+1)21?).
(2.30

Because of the remaining factes’—m3 the second time
derivative of q,(t,z) enters the function f,(t,2)
=L Yf,(w)]. Due to the vanishing of the function
d,(0,2) for the valuesz+2vI>0 no boundary terms arise
from the Laplace transform of the second time derivative

this half plane. Thus the transmission coefficient can be writg,(t,z). Thus we have

ten as a geometric series

* _ 2v
T..=4k —ikl (k K) ikl(2v+1) 2.2
1= 4kie T 2, e . (229

At this stage we need the simplified dispersion formula
(2.1) for an analytic inversion of the Laplace transform. Ex-
panding each term of the series witk )" cancels the
w? terms in the numerator. Thus the transformed Green's

function (2.17) becomes

~ . (w3 — w3

glz(X_S,XB)Z_ZIKZGIk(X x>—1)
o 2 2

1 (m5—mg)?”

XVZO P (k+K)4v+2

ei kl(2v+1)

. (2.2

For our further calculations it is useful to write this as

2 oo
Gl =5 2, T,(Jo2-md),  (2.27)
mg =0
with the new functiorﬂ given by
?V(w) — (wZ_ mg)ei w(;s—x?’—l)
_imgv+2ei(2v+l)|\/w2—mg
(2.28

\/wz—mg(w-i- \/a)z—mg)‘h’+2

and an effective cutoff frequenay,= \/mzz— mlz. Disregard-
ing the factor ahead of the fraction {@.28 for a moment,
the functionf, corresponds to the time domain functid8]

f,(t,2)=—mga,(t,2) —d,(t,2). (2.3

Now the inverse transform of the series(®127) yields for
its terms, defined by, (t,2)=L" l[f,,(\/w —mzl)] the ex-

Soressmr’{ls]

t
h,(t,2)=f,(t,2)— mlf f (Vt°—u?,2)J;(myu)du.
0
(2.32
Therefore we obtain for the integré2.23 the series expan-
sion
2 o]
g1t,2)= _22 o1,2)
mg 7=0
=-22, { S(t,2)+ zqv<t 2)
t 1
—mlf [qy(vtz—uz,ZH —20,(Jt*-u%2)
0 0

X Ji(myu)dul.

(2.33

The structure of this Green’s function can be explained phe-
nomenologically by looking at Eq2.32. Even the leading
termqq of the series, and thug,, jumps from zero to a finite
value at the boundary of the past light cone. This property of
the Green’s function guarantees the causal propagation of
every pulse. In opposition to the free space, here the support
of the Green’s function is not only the boundary of the light
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cone but its full interior. There are two reasons for this fea-The distance between the maximum and the wave front of
ture. First, consider the first term in E€R.32 and accord- the packet is given by the parametgrwith the property
ingly the terms of the serieg, given by Eq.(2.30. These 0<y<-—s—I/2. The upper boundary of comes from the
terms contribute to the series only whienz+2vl. Thus the condition that the wave front of the initial pulse has to be in
vth term of the series represents the part of the field thafront of the barrier ax®=0. This is necessary because the
leaves the barrier on the right-hand side afterrgflections barrier causes deformations of the pulse that are initially un-
at its boundaries. For the second reason take a look at tHenown.

second term of Eq.2.32). This term has nothing to do with With this initial pulse one can carry out the integration in
the barrier itself but arises from the boundary conditions ofEqg. (2.3) using the convolution theorem. Changing the inte-
the waveguide. Notice that the field is reflected there andyration variable ta =t—x3+1, we find the final solution for
back from the metallic boundaries while propagating througlthe componenB; of the pulse behind the barrier. With the
the waveguide. This echo effect is described by the integralelative coordinatei=x°—x3+s+1 one gets

of the term in question. This integral represents a distortion

in which all excitations that are noticeable at a given position _ — p o
in the time interva[ 0] take part. Ba(x )= —cogx" m/a) m_é,;o {cog ko(u—s)]I";"(u)
IIl. TUNNELING OF WAVE PACKETS +sinko(u—s) T2 (u)}, (3.5
A. Analysis with

Now we will solve the Maxwell equations for a given 12
pulse using the Green’s function determined in the preceding I'\"?(u)=0(u+y—(2v+1)1)
section. Before starting with this calculation we want to sim-

2v+1
plify the Green’s function. It has been noted above that a % Ju” e~ (u=v)?/o? ﬂ
distortion integral such as that of E@.32 always arises in (2v+1)l v+ (2v+1)l
the case of guided waves. However, the tunneling effect it- > Vi
self is described completely by the functiohgt,z) in the XJap+2(Mo Vo™= (20+1)7%)
first term of Eq.(2.32. We are interested in the undistorted X [cogkov) 3 12(u—v)
delay induced by the tunneling effect only. Therefore, in the
following calculations we consider only this term of the Fsin(kov) ##P(u—v)]dv (3.6
Green'’s function, i.e., we set
and the abbreviations
- 1
t,z)=-2 S(t,2)+ —0q,(t,z 3.1 2
9:1.2) ;o W2 mz (12 30 0(1)(t)=;t wg—m§+2k0(k0+w0)—%+% :

to determine the influence of the barrier itself on the trans- 3.7
mitted pulse. With this simplification, the studied system has 5
been mapped onto the model investigated by Deutch and 3Dt k| w2 2_£+£
Low [11]. Their cutoff frequency corresponds to our effec- (t)=ko| wo—m3 o ' o2
tive cutoff frequencymy= \/mzz—mlz. Notice that, for com- )
paring with experimental results, the contribution of the dis- + odl 02— 2_Ai 2

. N i o| wog— M3 7 +—z . (38)
tortion term to the total transmitted pulse decreases with an oo

increasing difference between the lower cutoff frequency
m; and the central frequenay, of the pulse. The integral in Eq(3.6) can be evaluated only numerically.
Using now Egs(2.3), (2.6), and with the simplified form Note that, for a fixed value oli, all of the functions
(3.1) of the Green’s function witk®=0, we obtain the com- T'{"?(u) with an index» larger than some index, vanish.
ponentB; behind the barrier for an arbitrary pulse started inNaturally, the indexv, depends on the value aof. So we
front of the tunneling region. Our calculations will be carried have to do only a finite number of numerical integrations to
out with a pulse given by a truncated Gausskp mode  obtain the componer;. The envelope o83 is shown in
centered at some positiori=s< —1/2 in front of the barrier ~ Fig. 2 for different barrier thicknessésand fixed central and
and with central frequencw, corresponding to the wave cutoff frequencies. The distancg between the maximum
numberk,= ‘/woz_ mzl. In this case the relevant and nonva- and the wave front qf the wave packet_has to be large enough
nishing field componentgl0] are the real parts of to prevent deformations of the transmitted pulse that arise in
the case of a pulse with too large high-frequency compo-

ooa 3 nents. For this and the following resulishas been chosen to
EZ(X)=Iw0; sin(x"m/a) ¢(x*), (32  pe 5 times the initial variance, of the pulse. Due to the
trivial dependence of the solution on the coordinatewe
Bs(x)=cogx'm/a)p(x3), (3.3 have always set'=0 corresponding to the boundary of the
waveguide. Because we have eliminated the echo effect
with the Gaussian envelope caused by the waveguide itself, the pulse does not change its

e ., shape outside the barrier region. Thus the graphs in Fig. 2
o(x3) =0 (—x3+s+ y)ekoe =970, (3.4  correspond to the time evolution of the wave packet mea-
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. TABLE I. Numerical results for tunneling times and variances

0.6 T T T T T T
' £=05[10] — of wave packets that have crossed barriers of different length. Two
05 F : £=1.0[2.5] e different pairs of cutoffs are considered with a corresponding cen-
i gfgg [igf] _____ tral frequency in between. In both cases the initial variance is
04 // \\\ o [ ] h 00:10'
/ . \
//// N \
sk /,’ TN, i m=1,m,=4, m;=6.5,m,=9.5,
AV SN wo=3.2 w,=8.5
0z F //// _______ \\\\\ i | T o T o
r : e AR
AT RSN | 0.5 0.66 10.01
01 ///’, ——, \\\\\\\ 1.0 0.82 9.97
et | i | C 2.0 0.86 9.85
20 15 10 -5 0 5 10 15 20 3.0 0.48 9.82
u 5.0 0.91 9.38 0.49 9.66

FIG. 2. Graphs of the envelope of the componBgtof the
magnetic field for Gaussian wave packets transmitted below th
cutoff across barriers of different thicknekss a function of the

gf contributions from Fourier components above the barrier
cutoff. These components are also responsible for the

relative coordinateu. The cutoff frequencies aren;=1 and slightly higher times of th(? narrow pa_ckets and its distort_ion
m,=4. In all casess,=3.2 ando=10. The graphs are scaled by at higher central frequencies. The variance of the transmitted

the factors in the bracketéere and in the following all quantities Packets decreases with increasing
are measured in arbitrary units. Let us now compare the tunneling times obtained from
our solutions with that of Martin and Landauggd]. These
sured by an observer at an arbitrary position behind the baiuthors have pointed out that the time delay of the center of
rier. To determine the tunneling time of the maximum of themass for a pulse restricted to a wide variance in the time
wave packet, we can use the free propagation of the wavdomain depends only on the frequency derivative of the
packet outside the barrier, i.e., the fact that it travels ther@hasea of the transmission coefficient, i.e.,
with the vacuum speed of light without changing its shape.
Then the maximum of the packet arrives at the left end of the _da N dk
barrier atx®= —s—1/2. Now letr be the value ofi at which ™M e ' do’
the envelope oB3(u) has its maximum. Considering the
definition of the coordinata, one obtains for the arrival time Where the expression has to be evaluated atw,. Due to
at the right end of the barrie®= 7—s—1/2. Thus the tun- the symmetry of the transmitted pulse, the time delay for the
neling time is given byr. center of mass and the maximum are the same. But the time
The graphs in Fig. 2 show that the transmitted pulses ar&w. does not represent the pure time delay of the maximum
also Gaussian-like wave packets, but exponentially dampegused by the barrier itself: Due to the echo effect of the
with growing barrier thickness. To obtain the tunneling timeWwaveguide that also affects the transmission coefficient,
and the variance of the packets we have fitted Gaussian waveL iS shifted to higher values. To account for this fact, we
packets to the graphs of Fig. 2. The resulting values-fand ~ compare thg tunneling times of our ec_ho—free solutions with
the variances are listed in Table I. Furthermore, this table that of Martin and Landauer by taking in E@.9) the phase
shows values also corresponding to Gaussian-like solutior@f the transmission coefficient witim; =0, corresponding to
for other cutoff frequencies of which the graphs are not2 free propagation outside the barrier. The graphgfand
shown here. While in the case b 0.5 the tunneling time oOur values ofr are plotted in Figs. 3 and 4 as functions of the
Corresponds to a subluminal average Ve|ocity of the maxicentral frequency and the barrier thiCkneSS, reSpeCtively, for
mum, it increases more and more S|ow|y with growing bar-the parameters considered above. A difference between the
rier thickness. This result agrees with the experimental obtwo tunneling times arises only for higher central frequencies
servation that for sufficiently long barriers the tunneling time . L ,
is independent of thickne$5]. The variance of the transmit- TABLE II. Numerlcal .results for tunneling tlmgs and variances
ted wave packets decreases with increasing barrier thicknesd WaVe packets with different central frequencies between both
. . . cutoffs and initial variancery=10 andoy=4, respectively. The
To determine the dependence of the tunneling time on th

o Barrier thickness i$=5.
central frequency of the initial pulses we have calculated the

(3.9

corresponding transmitted wave packets for a barrier of fixed 7o=10 To=4
thicknesd =5 with m;=1 andm,=4. We have considered - - - o
Gaussians with variances both abowe,€10) and below

(0p=4) the thickness. The resulting pulses are alsol.2 0.52 9.90 0.53 3.72
Gaussian-like except for the low-variance pulses withl.6 0.55 9.87 0.57 3.61
wo=m,/2. The parameters of the Gaussian solutions are.0 0.58 9.83 0.63 3.43
given by Table Il. The tunneling time increases with the2.4 0.64 9.78

central frequency, but corresponds always to a superluminal.g 0.72 9.68

average velocity for the maximum of the pulse. The maximag 2 0.91 9.38

are shifted to higher values afwith increasingw, because
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bifurcation curve z
. )

FIG. 3. Graph of the tunneling time for a wave packet calculated — = + =
by Martin and Landauef3] from the frequency derivative of the wave packet s —¢/2 barrier £/2 Pz
phase of the transmission coefficient as a function of the central
frequency of the packet. The solid line represents the cutoff fre- FIG. 5. Qualitative plot of the energy flow inxf-x* plane of
quenciesm;=1 andm,=4 and the barrier thicknesds=5. The the Minkowskian space-time. The plot intensity of the initial wave
dashed line corresponds to a vanishing cutoff frequency outside thigacket corresponds to its energy density.
barrier (m;=0). The dots represent the tunneling time of the maxi-
mum of our solution given by Eq3.5) with o= 10.

3

section, we want to explain this property of the transmitted
wave packet in terms of the energy flow across the barrier. In

b f th . tributi f hiah Fouri Minkowskian space-time it is given by the integral curves of
ecause of the growing contribution of Nigh FOUNEr COMPO~y, o t4r.vector field7® with the electromagnetic energy

nents to the transmitted pulse. Note that the approxmate
result of Martin and Landauer is valid only for pulses with a 9€NSity 7°=3(E-D+B-H) and the Poynting vector
narrow frequency range. Furthermore, our values for the tund? = (E>< H) for j=1,2,3.
neling time retains a small dependence on thickness, but cor- The fact thatT‘* is a continuous differentiable vector field
responds, nevertheless, to a superluminal velocity for théduces an important property of its integral curves in space-
maximum of the pulse. At this moment it should be emphadime: Curves with different initial positions do not intersect
sized again that the wave front travels always with theeach other. This property is not destroyed by the jumping
vacuum speed of light. Below, the possibility of superlumi-conditions for the electromagnetic field at the ends of the
nal maxima within an underlying causal propagation will bebarrier. To prove this claim we have to show only that any
explained in terms of the energy flow across the barrier. ~ curve flowing on a boundary of the barrier from one side has
a unique continuation at the other side of the boundary. This
means that there are no branching points for the curves at the
boundary. Due to the continuity of the componéritat the
Apparently, the maxima of the solutions we have givenboundary these points could arise only if one assumed that
above cross the barrier with a superluminal velocity. In thisthe componen vanished there and thus on both sides the
curves were tangential to the boundary at this position of
space-time. This would be the case for a curve that comes,

B. Interpretation

! ' ' ' ' ' for example, from the right, is tangent to the boundary, and
09 . ° 7 then goes back to the right. At the position where the curve is
08 X o 2 40, o — 89 7 tangential to the boundary, another curve could flow into this
07 M= Ehee=s 1 curve from the other side of the boundary, leading to a
0.6 . branching point. But this situation is not possible because the

r 05f . + g tangential vectors of the curves have to point in the direc-
04} N 4 tions of the future light cone. Looking at the neighboring
0k ™2 =98, w0 =83 ] curves of those considered above, these possible directions
02k i would be inconsistent with the continuity @ and the fact
o1 | that the curves do not intersect each other outside the bound-

o . , , , , ary. Thus there are no branching points at the boundary.

0 1 2 3 4 5 6 So we obtain the qualitative picture for the integral curves
¢ of the energy flow in the space-time shown in Fig. 5. The
curves originate in the initial pulse of which the wave front is

FIG. 4. Graphs of the tunneling time as given both[Bywith still to the left of the barrier at timaOZO. The curve Origi-
vanishing cutoff frequencyn, outside the barrieflines) and by the  nating in the wave front of the pulse has a slope of one
maximum of the solutior( 3.5) (dotg as a function of the barrier because the wave front propagates with the vacuum speed of
thickness for two different pairs of cutoff frequencies and a centralight. The fact that the curves do not intersect each other
frequency in between. The dots correspond to the values given iallows the initial pulse to be decomposed into two connected
Table I. parts from which transmitted and reflected curves, respec-
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tively, originate. If there is no energy absorbed by the bar-an observer behind the barrier that one would not detect the
rier, the starting positios of the bifurcation curve separating tunneled pulse earlier. than the freely propagated one, in
transmitted and reflected curves is given implicitly by theagreement with causality.

transmitted portion of the energy of the initial pulse, i.e.,
IV. SUMMARY AND CONCLUSION

fwf)o, A= fwf)L o~ (3.10 In Eq. (3.5, we have given an exact analytic expression
s PX0=0 o = in the time domain for the causal Green’s function of a
model that describes an ideal case of electromagnetic tunnel-
The integration along the time axis can be done at any posing. The structure of this function allows for a reduction to
tion x3=p behind the barrier. those terms that describe only the pure tunneling effect with-
Now, by means of the energy flow as shown in Fig. 5, weout the distortions caused by the waveguide. With this re-
want to explain the existence of solutions with superluminalduced Green’s function, we calculated the shape of transmit-
maxima within a causal theory. The part of the initial pulseted wave packets for truncated Gaussians as initial pulses.
between its wave front and the starting pasnof the bifur- ~ The resulting pulse can be also Gaussian-like. In agreement
cation curve is mapped along the energy flow on the timavith the approximate result of Martin and Landa{igf and
axis atx3=p. The closer two neighboring points of the ini- the experiments on microwaves by Enders and Nifslzthe
tial pulse atx’=0 are to the starting poirg of the bifurca- ~ ime delay of the maximum of the pulse becomes nearly

tion curve, the more the distance between them is extenddgdependent of the thickness for sufficiently long barriers.
by this mapping. This is necessary because of the arrival urthermore, the variance of the transmitted packet decreases

transmitted curves at®=p also at arbitrary late times. Due ;Ve'tsh é?ﬁ;%azwgrgbya;{g% tf\;\;gkﬁg\?’:. fggnzxgcﬂgilgtgerzz;e/ gfrc;p;rj—_
to th|s_spread|ng of the curves the energy density o_f th%erluminal pulse maximum with the causality of Maxwell’'s
transmitted pulse at®= p begins to decrease from a particu-

. . . ) . theory.
lar time corresponding to the arrival time of the maximum \jihin this interpretation the energy of the transmitted

behind the barrigr. I_n ot_her words, the transmittgd pullse r€pulse can only originate from a connected part behind the
sults from a redistribution of the energy contained in theyaye front of the initial wave packet because the integral
forward tail between the front ansl of the starting pulse. cyrves of the energy flow do not intersect each other. In this
Thus the maxima of the initial and transmitted pulse are nOgense, the Gaussian Shape of the transmitted pu|se can 0n|y
causally related. be interpreted as an amazing interference effect. Due to the

The whole picture arises as a consequence of the matipropagation of the wave front with the vacuum speed of
ematical claim that the curves do not intersect each othefight, it is not possible to obtain a superluminal maximum if
These curves themselves, of course, cannot be observed time barrier thickness exceeds the distance between the maxi-
any experiment. But we believe that they are a suitable toainum and the wave front. Thus, in the case of truncated wave
to get a classical picture of the mechanism of the tunnelingpackets, the time delay of the maximum does not stay inde-
effect. Within this classical interpretation the surprising re-pendent of the thickness for all barrier lengths. In summary,
sult of our solutions is the almost exact reconstruction of ghe results of the tunneling experiments can be obtained from
Gaussian wave packet behind the barrier. This effect yields &€ causal Maxwell theory.
pulse reshapingl].
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