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An electromagnetic truncated Gaussian pulse propagates through a waveguide with piecewise different
dielectric constants. The waveguide contains a barrier, namely, a region of a lower dielectric constant com-
pared to the neighboring regions. This setup yields a purely imaginary wave vector in the region of the barrier
~‘‘electromagnetic tunneling’’!. We calculate exactly the time-dependent Green’s function for a slightly sim-
plified dispersion relation. In order to observe the plain tunneling effect we neglect the distortions caused by
the waveguide in obtaining the transmitted pulse. The wave front of the pulse travels with the vacuum speed
of light. Nevertheless, behind the barrier, the maximum of the transmitted pulse turns up at an earlier time than
in the case without a barrier. This effect will be explained in terms of the energy flow across the barrier. The
solutions obtained reproduce the shape of the pulses measured in the tunneling experiments of Enders and
Nimtz @J. Phys.~France! I 2, 1693~1992!; Phys. Rev. E48, 632~1993!; Phys. Rev. B47, 9605~1993!; J. Phys.
~France! I 3, 1089~1993!; 4, 565 ~1994!#. @S1063-651X~96!05711-X#

PACS number~s!: 03.50.De, 73.40.Gk, 03.40.Kf

I. INTRODUCTION

Tunneling, like interference, is a characteristic property of
waves. This effect occurs both in nonrelativistic quantum
mechanics and in electrodynamics. Although the time-
dependent differential equations of both theories are funda-
mentally different in their structure, theoretical calculations
yield analogous results for the traversal time of the maxi-
mum of a wave packet’s modulus. These calculations are
based on the stationary-phase approximation@1,2# as well as
on a scattering ansatz@3#. For sufficiently long barriers, the
time delay is independent of the thickness and thus can cor-
respond to arbitrary large effective velocities of the maxi-
mum of a pulse for crossing the barrier. This prediction is in
agreement with results obtained by Nimtz and Enders in tun-
neling experiments with evanescent microwaves in a wave-
guide with a frequency below the cutoff@4–8#. In these ex-
periments the evanescent waveguide region, i.e., the barrier,
is realized by an undersized region in between normal sized
regions of a waveguide line. Due to the inhomogeneous
cross section of the waveguide, we could not obtain an ana-
lytic expression for the transmission coefficient. Therefore, a
recent microwave experiment@9# studied a barrier produced
by a low-dielectric-constant (e2) region, which was placed
in a rectangular waveguide of the same cross section, filled
with a higher dielectric constante1. This experimental setup
is illustrated in Fig. 1. The relation between wave number
k and frequencyv is given by the dispersion formula~with
the vacuum speed of light set toc51)

k5AeAv22vc
2/e, ~1.1!

wherevc represents the cutoff frequency of the empty wave-
guide ande is the variable dielectric constant@10#. Therefore
a wave of frequencyv0 with vc

2/e1,v0
2,vc

2/e2 possesses a

real wave numberk outside the barrier, but on entering the
tunnel region with a lower dielectric constantk becomes
imaginary and the wave will spatially decay.

In this paper we will consider the electrodynamic tunnel-
ing for a barrier given by a variable dielectric constant. This
setup is amenable to a rigorous mathematical description. It
was theoretically investigated by Martin and Landauer@3#.
They concentrated on the tunneling of a Gaussian pulse with
a narrow frequency range. Using a scattering ansatz they
showed that the time delay of the center of mass depends
only on the frequency derivative of the phase of the trans-
mission coefficient. For sufficiently long barriers, this delay
becomes independent of thickness and thus corresponds to
an arbitrary large effective velocity of the center of mass for
crossing the tunnel region, which is known as the Hartman
effect @1# and has been experimentally verified by Enders
and Nimtz@5#.

We want to examine how this effect is related to causal-
ity. To carry out this goal, the fundamental solution of the
given setup, the retarded Green’s function, will be con-
structed analytically assuming causality. This means that this
function vanishes outside the past light cone, i.e., the wave
front travels with the vacuum speed of light. With the aid of
this solution we will give an analytic expression for the en-
tire transmitted pulse, which has the observed superluminal
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property of the center of mass. In addition, this allows us to
determine the deformation of the pulse caused by crossing
the barrier. It is assumed that the initial pulse is given by a
truncated Gaussian wave packet located only to the left of
the barrier.

II. GREEN’S FUNCTION

A. Model

The Green’s function will be obtained using a Laplace
transform. The structure of the dispersion formula~1.1! pre-
vents an analytic inversion of this transformation because of
the different coefficients in front ofv2 outside and inside the
barrier, respectively. Therefore we consider in this paper a
simplified model for the electromagnetic tunneling effect
with dispersion formulas given by

k5Av22m1
2, k5Av22m2

2, ~2.1!

with theAe coefficients dropped and the cutoff frequencies
m15vc /Ae1 andm25vc /Ae2 outside and inside the bar-
rier, respectively. The transmission coefficient of the barrier
does not change qualitatively under this simplification. The
model given by these dispersion formulas, together with the
Maxwell equations, still represents an electrodynamic case of
tunneling. Within this model the velocity of a wave front
limk→`v(k)/k51 is always given by the vacuum speed of
light and it is assumed that the dielectric medium influences
only the cutoff frequencies themselves. A similar model con-
sisting of a classical scalar field that satisfies the one-
dimensional relativistic Klein-Gordon equation with a rect-
angular potential barrier was investigated by Deutch and
Low @11#. Under the condition that the tunneling amplitude
is very small, they found an approximate solution given by a
Gaussian wave packet, which turns up on the right-hand side
of the barrier as if its maximum took zero time to cross the
barrier. Our goal here is to find an exact solution of the
Maxwell equations yielding exact values for the tunneling
time of the maximum of a Gaussian wave packet, which can
be compared to the approximate results given by Martin and
Landauer. Furthermore, taking truncated wave packets of
variable variance, the influence of these attributes on the tun-
neling time will be studied.

Suppose that an electromagnetic pulse has been generated
in the region to the left of the barrier by an appropriate cur-
rent that has already vanished before the wave front of the
pulse reaches the left end of the barrier. The propagation of
this pulse is then determined by the dispersion formulas to-
gether with the Maxwell equations with vanishing charge
current. One can obtain the propagated field behind the bar-
rier by solving these equations with the pulse located in front
of the barrier as initial condition. This can be done with the
aid of the retarded Green’s function. In the case of the elec-
tromagnetic field, this fundamental solution can be written as
an antisymmetric tensorGx̄ab , (a,b50, . . . ,3),satisfying
the four-dimensional wave equation with the Dirac distribu-
tion at the fixed space-time positionx̄ as inhomogeneity

hGx̄52d x̄ , ~2.2!

whereh5]0
22]1

22]2
22]3

2 is the Laplace-Beltrami operator
of the Minkowskian space time@12#. Beyond that,Gx̄ must
allow for the following boundary conditions: First, it has to
vanish outside the past light cone atx̄ and second, its six
components have to jump in the respective correct manner at
the two boundaries between the propagating and the evanes-
cent region and must take into account the metallic boundary
conditions on the surface of the waveguide. In the next sec-
tion, we will give a solution of this boundary-value problem
where the axial magnetic componentGx̄12 of Green’s func-
tion shall serve as example. Given the relevant field compo-
nents in front of the barrier at the timex050, the expression

B3~ x̄!5E
N
@Gx̄12,1E22Gx̄12,2E12Gx̄12,0B3#dx

1dx2dx3

~2.3!

yields the time evolution of theB3 component of the mag-
netic field behind the barrierx̄ 3. l /2 in terms of partial de-
rivativesGx̄ab,g of Green’s function. The three-dimensional
domainN5$xPR4u0<x1<a,0<x2<b,x050% of integra-
tion is the interior of the whole waveguide line at time
x050.

B. Analysis

We solve the time-dependent wave equation~2.2! by a
Laplace transform relative to the timex0 for a fixed x̄ with
the propertyx̄ 0.0. The Laplace transform yields, after in-
version, a function in the time domain that vanishesuntil a
certain time is reached. Therefore this method is only suit-
able to get the advanced Green’s function. The retarded
Green’s function, though, can then be obtained by a simple
time reflection. The transformed components of Green’s
function are defined by

G̃ x̄ab~v!5L@Gx̄ab#5E
0

`

eivx
0
Gx̄ab dx0, ~2.4!

whereL denotes the Laplace transform withv in the upper
half plane of complex numbers.

For a waveguide with perfectly conducting walls given by
the surfaceS, the boundary condition for the electromagnetic
field reads@10#

~nW 3EW !uS50W , ~nW •BW !uS50, ~2.5!

wherenW is the vector normal to the surfaceS. This condition
is satisfied if one uses a Green’s function that is invariant
relative to the reflections at the four walls of the rectangular
waveguide. This invariant Green’s function can be decom-
posed into the characteristic modes of the waveguide. The
result for the Laplace transformed components can be written
as

G̃ x̄ab

5
1

2pab (
i,h52`

`

f abe
2 i ~x1p/ai1x2p/bh!eiv x̄0g̃ab~ x̄ 3,x3!,

~2.6!
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introducing the antisymmetric tensor

f ab5S 0 ic1s2 is1c2 2s1s2

2 ic1s2 0 c1c2 ic1s2

2 is1c2 2c1c2 0 is1c2

s1s2 2 ic1s2 2 is1c2 0

D , ~2.7!

with

c1 :5cos~ x̄ 1ip/a!, s1 :5sin~ x̄ 1ip/a!, ~2.8!

c2 :5cos~ x̄ 2hp/b!, s2 :5sin~ x̄ 2hp/b!. ~2.9!

This tensor describes thex1 andx2 dependence of the modes
represented by its respective pairs of numbers (i,h). Here
we have introduced a one-dimensional Green’s function
g̃ab( x̄

3,x3) to account for the dependence on the axial co-
ordinatex3. Only this function contains the dependence on
the frequency and will therefore define the time evolution of
the field. Applying the transformed wave equation~2.2! to
Eq. ~2.6!, we find that the one-dimensional Green’s function
has to be a solution of the ordinary differential equation
given by

F d2

d~x3!2
1v22m2~x3!G g̃ab~ x̄ 3,x3!5d~x32 x̄ 3!, ~2.10!

with the jumping cutoff frequency determined by the simpli-
fied dispersion formulas~2.1!, i.e.,

m~x3!5H m15vc /Ae1, ux3u> l /2

m25vc /Ae2, ux3u, l /2,
~2.11!

with vc5pAi2/a21h2/b2 for a rectangular waveguide. No-
tice that the cutoff frequenciesm1 andm2 change with the
type of mode. Thus the one-dimensional Green’s function
also depends on the numbers (i,h). In Eq. ~2.10! no bound-
ary terms at zero time emerge from the Laplace transform of
the second time derivative due to the vanishing of the ad-
vanced Green’s function forx0, x̄ 0 and the property
x̄ 0.0.
The one-dimensional Green’s function for~2.10! can be

constructed from two linear independent solutions of the cor-
responding homogeneous equation. These can be chosen as a
plane wave traveling from the left-hand side and the right-
hand side, respectively, toward the barrier, i.e.,

fab
~1!~x3!5H eabe

ikx31Rabe
2 ikx3, x3<2 l /2

Aabe
ikx31Babe

2 ikx3, ux3u, l /2

Tabe
ikx3, x3> l /2

~2.12!

and

fab
~2!~x3!5H Tabe

2 ikx3, x3<2 l /2

Aabe
2 ikx31Babe

ikx3, ux3u, l /2

eabe
2 ikx31Rabe

ikx3, x3> l /2,
~2.13!

with the total antisymmetric tensoreab . The wave numbers
k andk are given by the dispersion formulas~2.1!. Due to
the upper half plane analyticity of a Laplace transformed
function, the square roots in these equations have to be cho-
sen analytic in the upperv half plane. Hence the wave num-
bers always have a positive imaginary part. The respective
coefficientsRab , Aab , Bab , andTab are uniquely deter-
mined by the boundary conditions at the two planes defining
the evanescent region betweenx352 l /2 andx35 l /2. The
coefficients of both solutions are assumed to be equal be-
cause of the symmetry of the barrier relative tox350. Tak-
ing into account that the imaginary part ofk is positive, the
asymptotic behavior of the two solutions looks like

lim
x3→2`

fab
~2!~x3!50, lim

x3→`

fab
~1!~x3!50. ~2.14!

Therefore we can construct the Green’s function in the upper
v half plane as

g̃ab~ x̄ 3,x3!5
1

Wab
H fab

~1!~ x̄ 3!fab
~2!~x3!, x̄ 3>x3

fab
~2!~ x̄ 3!fab

~1!~x3!, x̄ 3<x3,
~2.15!

with the WronskianWab of fab
(1) andfab

(2) defined by

Wab5fab
~2!
dfab

~1!

dx3
2fab

~1!
dfab

~2!

dx3
. ~2.16!

The casex3, x̄ 3 with x3,2 l /2 andx̄ 3. l /2 is the inter-
esting one for the investigation of the tunneling time problem
for wave packets. In this case the Green’s function is suitable
to calculate the field behind the barrier for a pulse assumed
to be located initially only in the front of the barrier. In this
case the Green’s function reads

g̃ab~ x̄ 3,x3!5
1

2ik
Tabe

ik~ x̄32x3!. ~2.17!

We now must consider the respective matching conditions
for the components of the electromagnetic field to evaluate
the coefficients of the two solutions. For simplicity let us
look only at the calculations for the componentB3. This
component has to be continuous atx352 l /2 andx35 l /2.
Furthermore, we need the behavior of its partial derivative
perpendicular to the boundary planes of the barrier. The
transverse componentsB1 andB2 are continuous at any po-
sition of the two boundary planes. Hence its partial deriva-
tives parallel to the boundary planes, i.e., thex1 andx2 de-
rivatives, also have to be continuous at these planes. The
equation divBW 50 shows that thex3 derivative of the com-
ponentB3 is continuous at the boundary planes too. These
four continuity conditions together yield the coefficients of
the corresponding functionsf12

(1) andf12
(2) :

R125D21e2 ikl~12e2ik l !~k22k2!, ~2.18!

A125D212k~k1k!ei ~k2k!l /2, ~2.19!

B1252D212k~k2k!ei ~3k2k!l /2, ~2.20!

T125D214kkei ~k2k!l , ~2.21!
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with the common denominator

D5~k1k!22~k2k!2e2ik l . ~2.22!

Due to the absence of upper half plane zeros ofD the coef-
ficients are analytic in this half plane.

We find the one-dimensional retarded Green’s function in
the time domain after a time reflection. The inverse Laplace
transform yields, fort:5 x̄ 02x0>0,

gab~ t,x̄ 3,x3!5
1

2pE2`1 is

`1 is

e2 ivtg̃ab~ x̄ 3,x3!dv, ~2.23!

with g̃ab( x̄
3,x3) given by Eq.~2.17!.

In the case of the componentB3 we now have to consider
the transmission coefficientT12 given in ~2.21!. Note that the
expressionk1k never vanishes in the upperv half plane.
Thus, expanding the right-hand side of~2.21! with
1/(k1k)2, we find

T125
4kk

~k1k!2
ei ~k2k!l

1

12S k2k

k1k D 2e2ik l . ~2.24!

The term (k2k)/(k1k) is bounded in the upperv half
plane by 1 and the imaginary part ofk is always positive in
this half plane. Thus the transmission coefficient can be writ-
ten as a geometric series

T1254kke2 ikl (
n50

`
~k2k!2n

~k1k!2n12e
ik l ~2n11!. ~2.25!

At this stage we need the simplified dispersion formulas
~2.1! for an analytic inversion of the Laplace transform. Ex-
panding each term of the series with (k1k)2n cancels the
v2 terms in the numerator. Thus the transformed Green’s
function ~2.17! becomes

g̃12~ x̄
3,x3!522ik2eik~ x̄32x32 l !

3 (
n50

`
1

k

~m2
22m1

2!2n

~k1k!4n12 e
ik l ~2n11!. ~2.26!

For our further calculations it is useful to write this as

g̃12~ x̄
3,x3!5

2

m0
2 (

n50

`

f̃ n~Av22m1
2!, ~2.27!

with the new functionf̃ n given by

f̃ n~v!5~v22m0
2!eiv~ x̄32x32 l !

3
2 im0

4n12ei ~2n11!lAv22m0
2

Av22m0
2~v1Av22m0

2!4n12
~2.28!

and an effective cutoff frequencym05Am2
22m1

2. Disregard-
ing the factor ahead of the fraction in~2.28! for a moment,
the functionf̃ n corresponds to the time domain function@13#

L21F f̃ n~v!
e2 iv~ x̄32x32 l !

v22m0
2 G

5Q„t2~2n11!l …S t2~2n11!l

t1~2n11!l D
2n11

3J4n12„m0At22~2n11!2l 2…, ~2.29!

with the step functionQ(x) and thenth Bessel function
Jn(x).

The additional exponential factor only causes a time
translation. By performing the inverse Laplace transforma-
tion L21 one gets, forqn(t,z)5L21@ f̃ n(v)(v

22m0
2)21#,

with the abbreviationz5 x̄ 32x3.0, the solution

qn~ t,z!5Q~ t2z22n l !S t2z1 l2~2n11!l

t2z1 l1~2n11!l D
2n11

3J4n12„m0A~ t2z1 l !22~2n11!2l 2….

~2.30!

Because of the remaining factorv22m0
2 the second time

derivative of qn(t,z) enters the function f n(t,z)
5L21@ f̃ n(v)#. Due to the vanishing of the function
qn(0,z) for the valuesz12n l.0 no boundary terms arise
from the Laplace transform of the second time derivative
q̈n(t,z). Thus we have

f n~ t,z!52m0
2qn~ t,z!2q̈n~ t,z!. ~2.31!

Now the inverse transform of the series in~2.27! yields for
its terms, defined byhn(t,z)5L21@ f̃ n(Av22m1

2)#, the ex-
pression@13#

hn~ t,z!5 f n~ t,z!2m1E
0

t

f n~At22u2,z!J1~m1u!du.

~2.32!

Therefore we obtain for the integral~2.23! the series expan-
sion

g12~ t,z!5
2

m0
2 (

n50

`

hn~ t,z!

522(
n50

` Fqn~ t,z!1
1

m0
2 q̈n~ t,z!

2m1E
0

t H qn~At22u2,z!1
1

m0
2 q̈n~At22u2,z!J

3J1~m1u!duG . ~2.33!

The structure of this Green’s function can be explained phe-
nomenologically by looking at Eq.~2.32!. Even the leading
termq0 of the series, and thush0, jumps from zero to a finite
value at the boundary of the past light cone. This property of
the Green’s function guarantees the causal propagation of
every pulse. In opposition to the free space, here the support
of the Green’s function is not only the boundary of the light
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cone but its full interior. There are two reasons for this fea-
ture. First, consider the first term in Eq.~2.32! and accord-
ingly the terms of the seriesqn given by Eq.~2.30!. These
terms contribute to the series only whent.z12n l . Thus the
nth term of the series represents the part of the field that
leaves the barrier on the right-hand side after 2n reflections
at its boundaries. For the second reason take a look at the
second term of Eq.~2.32!. This term has nothing to do with
the barrier itself but arises from the boundary conditions of
the waveguide. Notice that the field is reflected there and
back from the metallic boundaries while propagating through
the waveguide. This echo effect is described by the integral
of the term in question. This integral represents a distortion
in which all excitations that are noticeable at a given position
in the time interval@0,t# take part.

III. TUNNELING OF WAVE PACKETS

A. Analysis

Now we will solve the Maxwell equations for a given
pulse using the Green’s function determined in the preceding
section. Before starting with this calculation we want to sim-
plify the Green’s function. It has been noted above that a
distortion integral such as that of Eq.~2.32! always arises in
the case of guided waves. However, the tunneling effect it-
self is described completely by the functionsf n(t,z) in the
first term of Eq.~2.32!. We are interested in the undistorted
delay induced by the tunneling effect only. Therefore, in the
following calculations we consider only this term of the
Green’s function, i.e., we set

g12~ t,z!522(
n50

` H qn~ t,z!1
1

m0
2 q̈n~ t,z!J ~3.1!

to determine the influence of the barrier itself on the trans-
mitted pulse. With this simplification, the studied system has
been mapped onto the model investigated by Deutch and
Low @11#. Their cutoff frequency corresponds to our effec-
tive cutoff frequencym05Am2

22m1
2. Notice that, for com-

paring with experimental results, the contribution of the dis-
tortion term to the total transmitted pulse decreases with an
increasing difference between the lower cutoff frequency
m1 and the central frequencyv0 of the pulse.

Using now Eqs.~2.3!, ~2.6!, and with the simplified form
~3.1! of the Green’s function withx050, we obtain the com-
ponentB3 behind the barrier for an arbitrary pulse started in
front of the tunneling region. Our calculations will be carried
out with a pulse given by a truncated GaussianH10 mode
centered at some positionx35s,2 l /2 in front of the barrier
and with central frequencyv0 corresponding to the wave
numberk05Av0

22m1
2. In this case the relevant and nonva-

nishing field components@10# are the real parts of

E2~x!5 iv0

a

p
sin~x1p/a!w~x3!, ~3.2!

B3~x!5cos~x1p/a!w~x3!, ~3.3!

with the Gaussian envelope

w~x3!5Q~2x31s1g!eik0x
3
e2~x32s!2/s2. ~3.4!

The distance between the maximum and the wave front of
the packet is given by the parameterg with the property
0,g,2s2 l /2. The upper boundary ofg comes from the
condition that the wave front of the initial pulse has to be in
front of the barrier atx050. This is necessary because the
barrier causes deformations of the pulse that are initially un-
known.

With this initial pulse one can carry out the integration in
Eq. ~2.3! using the convolution theorem. Changing the inte-
gration variable tov5t2 x̄ 31 l , we find the final solution for
the componentB3 of the pulse behind the barrier. With the
relative coordinateu5 x̄ 02 x̄ 31s1 l one gets

B3~ x̄ !52cos~ x̄1p/a!
2

m0
2 (

n50

`

$cos@k0~u2s!#Gn
~1!~u!

1sin@k0~u2s!#Gn
~2!~u!%, ~3.5!

with

Gn
~1,2!~u!5Q„u1g2~2n11!l …

3E
~2n11!l

u1g

e2~u2v !2/s2S v2~2n11!l

v1~2n11!l D
2n11

3J4n12„m0Av22~2n11!2l 2…

3@cos~k0v !q~1,2!~u2v !

7sin~k0v !q~2,1!(u2v !]dv ~3.6!

and the abbreviations

q~1!~ t !5
2

s2 tS v0
22m2

212k0~k01v0!2
4t2

s4 1
6

s2D ,
~3.7!

q~2!~ t !5k0S v0
22m2

22
12t2

s4 1
6

s2D
1v0S v0

22m2
22

4t2

s4 1
2

s2D . ~3.8!

The integral in Eq.~3.6! can be evaluated only numerically.
Note that, for a fixed value ofu, all of the functions
Gn
(1,2)(u) with an indexn larger than some indexn0 vanish.

Naturally, the indexn0 depends on the value ofu. So we
have to do only a finite number of numerical integrations to
obtain the componentB3. The envelope ofB3 is shown in
Fig. 2 for different barrier thicknessesl and fixed central and
cutoff frequencies. The distanceg between the maximum
and the wave front of the wave packet has to be large enough
to prevent deformations of the transmitted pulse that arise in
the case of a pulse with too large high-frequency compo-
nents. For this and the following resultsg has been chosen to
be 5 times the initial variances0 of the pulse. Due to the
trivial dependence of the solution on the coordinatex1 we
have always setx150 corresponding to the boundary of the
waveguide. Because we have eliminated the echo effect
caused by the waveguide itself, the pulse does not change its
shape outside the barrier region. Thus the graphs in Fig. 2
correspond to the time evolution of the wave packet mea-
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sured by an observer at an arbitrary position behind the bar-
rier. To determine the tunneling time of the maximum of the
wave packet, we can use the free propagation of the wave
packet outside the barrier, i.e., the fact that it travels there
with the vacuum speed of light without changing its shape.
Then the maximum of the packet arrives at the left end of the
barrier atx052s2 l /2. Now lett be the value ofu at which
the envelope ofB3(u) has its maximum. Considering the
definition of the coordinateu, one obtains for the arrival time
at the right end of the barrierx05t2s2 l /2. Thus the tun-
neling time is given byt.

The graphs in Fig. 2 show that the transmitted pulses are
also Gaussian-like wave packets, but exponentially damped
with growing barrier thickness. To obtain the tunneling time
and the variance of the packets we have fitted Gaussian wave
packets to the graphs of Fig. 2. The resulting values fort and
the variances are listed in Table I. Furthermore, this table
shows values also corresponding to Gaussian-like solutions
for other cutoff frequencies of which the graphs are not
shown here. While in the case ofl50.5 the tunneling time
corresponds to a subluminal average velocity of the maxi-
mum, it increases more and more slowly with growing bar-
rier thickness. This result agrees with the experimental ob-
servation that for sufficiently long barriers the tunneling time
is independent of thickness@5#. The variance of the transmit-
ted wave packets decreases with increasing barrier thickness.

To determine the dependence of the tunneling time on the
central frequency of the initial pulses we have calculated the
corresponding transmitted wave packets for a barrier of fixed
thicknessl55 with m151 andm254. We have considered
Gaussians with variances both above (s0510) and below
(s054) the thickness. The resulting pulses are also
Gaussian-like except for the low-variance pulses with
v0*m2/2. The parameters of the Gaussian solutions are
given by Table II. The tunneling time increases with the
central frequency, but corresponds always to a superluminal
average velocity for the maximum of the pulse. The maxima
are shifted to higher values oft with increasingv0 because

of contributions from Fourier components above the barrier
cutoff. These components are also responsible for the
slightly higher times of the narrow packets and its distortion
at higher central frequencies. The variance of the transmitted
packets decreases with increasingv0.

Let us now compare the tunneling times obtained from
our solutions with that of Martin and Landauer@3#. These
authors have pointed out that the time delay of the center of
mass for a pulse restricted to a wide variance in the time
domain depends only on the frequency derivative of the
phasea of the transmission coefficient, i.e.,

tML5
da

dv
1 l

dk

dv
, ~3.9!

where the expression has to be evaluated atv5v0. Due to
the symmetry of the transmitted pulse, the time delay for the
center of mass and the maximum are the same. But the time
tML does not represent the pure time delay of the maximum
caused by the barrier itself: Due to the echo effect of the
waveguide that also affects the transmission coefficient,
tML is shifted to higher values. To account for this fact, we
compare the tunneling times of our echo-free solutions with
that of Martin and Landauer by taking in Eq.~3.9! the phase
of the transmission coefficient withm150, corresponding to
a free propagation outside the barrier. The graph oftML and
our values oft are plotted in Figs. 3 and 4 as functions of the
central frequency and the barrier thickness, respectively, for
the parameters considered above. A difference between the
two tunneling times arises only for higher central frequencies

TABLE I. Numerical results for tunneling times and variances
of wave packets that have crossed barriers of different length. Two
different pairs of cutoffs are considered with a corresponding cen-
tral frequency in between. In both cases the initial variance is
s0510.

m151,m254, m156.5,m259.5,
v053.2 v058.5

l t s t s

0.5 0.66 10.01
1.0 0.82 9.97
2.0 0.86 9.85
3.0 0.48 9.82
5.0 0.91 9.38 0.49 9.66

TABLE II. Numerical results for tunneling times and variances
of wave packets with different central frequencies between both
cutoffs and initial variances0510 ands054, respectively. The
barrier thickness isl55.

s0510 s054
v0 t s t s

1.2 0.52 9.90 0.53 3.72
1.6 0.55 9.87 0.57 3.61
2.0 0.58 9.83 0.63 3.43
2.4 0.64 9.78
2.8 0.72 9.68
3.2 0.91 9.38

FIG. 2. Graphs of the envelope of the componentB3 of the
magnetic field for Gaussian wave packets transmitted below the
cutoff across barriers of different thicknessl as a function of the
relative coordinateu. The cutoff frequencies arem151 and
m254. In all casesv053.2 ands510. The graphs are scaled by
the factors in the brackets.~Here and in the following all quantities
are measured in arbitrary units.!

54 5785PROPAGATION OF AN ELECTROMAGNETIC PULSE . . .



because of the growing contribution of high Fourier compo-
nents to the transmitted pulse. Note that the approximate
result of Martin and Landauer is valid only for pulses with a
narrow frequency range. Furthermore, our values for the tun-
neling time retains a small dependence on thickness, but cor-
responds, nevertheless, to a superluminal velocity for the
maximum of the pulse. At this moment it should be empha-
sized again that the wave front travels always with the
vacuum speed of light. Below, the possibility of superlumi-
nal maxima within an underlying causal propagation will be
explained in terms of the energy flow across the barrier.

B. Interpretation

Apparently, the maxima of the solutions we have given
above cross the barrier with a superluminal velocity. In this

section, we want to explain this property of the transmitted
wave packet in terms of the energy flow across the barrier. In
Minkowskian space-time it is given by the integral curves of
the four-vector fieldT a with the electromagnetic energy
density T 05 1

2(EW •DW 1BW •HW ) and the Poynting vector
T j5(EW 3HW ) j for j51,2,3.

The fact thatT a is a continuous differentiable vector field
induces an important property of its integral curves in space-
time: Curves with different initial positions do not intersect
each other. This property is not destroyed by the jumping
conditions for the electromagnetic field at the ends of the
barrier. To prove this claim we have to show only that any
curve flowing on a boundary of the barrier from one side has
a unique continuation at the other side of the boundary. This
means that there are no branching points for the curves at the
boundary. Due to the continuity of the componentT 3 at the
boundary these points could arise only if one assumed that
the componentT 3 vanished there and thus on both sides the
curves were tangential to the boundary at this position of
space-time. This would be the case for a curve that comes,
for example, from the right, is tangent to the boundary, and
then goes back to the right. At the position where the curve is
tangential to the boundary, another curve could flow into this
curve from the other side of the boundary, leading to a
branching point. But this situation is not possible because the
tangential vectors of the curves have to point in the direc-
tions of the future light cone. Looking at the neighboring
curves of those considered above, these possible directions
would be inconsistent with the continuity ofT 3 and the fact
that the curves do not intersect each other outside the bound-
ary. Thus there are no branching points at the boundary.

So we obtain the qualitative picture for the integral curves
of the energy flow in the space-time shown in Fig. 5. The
curves originate in the initial pulse of which the wave front is
still to the left of the barrier at timex050. The curve origi-
nating in the wave front of the pulse has a slope of one
because the wave front propagates with the vacuum speed of
light. The fact that the curves do not intersect each other
allows the initial pulse to be decomposed into two connected
parts from which transmitted and reflected curves, respec-

FIG. 3. Graph of the tunneling time for a wave packet calculated
by Martin and Landauer@3# from the frequency derivative of the
phase of the transmission coefficient as a function of the central
frequency of the packet. The solid line represents the cutoff fre-
quenciesm151 andm254 and the barrier thicknessl55. The
dashed line corresponds to a vanishing cutoff frequency outside the
barrier (m150). The dots represent the tunneling time of the maxi-
mum of our solution given by Eq.~3.5! with s0510.

FIG. 4. Graphs of the tunneling time as given both by@3# with
vanishing cutoff frequencym1 outside the barrier~lines! and by the
maximum of the solution~ 3.5! ~dots! as a function of the barrier
thickness for two different pairs of cutoff frequencies and a central
frequency in between. The dots correspond to the values given in
Table I.

FIG. 5. Qualitative plot of the energy flow in ax0-x3 plane of
the Minkowskian space-time. The plot intensity of the initial wave
packet corresponds to its energy density.
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tively, originate. If there is no energy absorbed by the bar-
rier, the starting positions of the bifurcation curve separating
transmitted and reflected curves is given implicitly by the
transmitted portion of the energy of the initial pulse, i.e.,

E
s

`

T ux050
0 dx35E

0

`

T ux35p
0 dx0. ~3.10!

The integration along the time axis can be done at any posi-
tion x35p behind the barrier.

Now, by means of the energy flow as shown in Fig. 5, we
want to explain the existence of solutions with superluminal
maxima within a causal theory. The part of the initial pulse
between its wave front and the starting points of the bifur-
cation curve is mapped along the energy flow on the time
axis atx35p. The closer two neighboring points of the ini-
tial pulse atx050 are to the starting points of the bifurca-
tion curve, the more the distance between them is extended
by this mapping. This is necessary because of the arrival of
transmitted curves atx35p also at arbitrary late times. Due
to this spreading of the curves the energy density of the
transmitted pulse atx35p begins to decrease from a particu-
lar time corresponding to the arrival time of the maximum
behind the barrier. In other words, the transmitted pulse re-
sults from a redistribution of the energy contained in the
forward tail between the front ands of the starting pulse.
Thus the maxima of the initial and transmitted pulse are not
causally related.

The whole picture arises as a consequence of the math-
ematical claim that the curves do not intersect each other.
These curves themselves, of course, cannot be observed in
any experiment. But we believe that they are a suitable tool
to get a classical picture of the mechanism of the tunneling
effect. Within this classical interpretation the surprising re-
sult of our solutions is the almost exact reconstruction of a
Gaussian wave packet behind the barrier. This effect yields a
pulse reshaping@1#.

To obtain a more physical point of view one can ask at
which time the transmitted pulse exceeds an arbitrary thresh-
old behind the barrier. Due to the damping and squeezing of
the transmitted pulse this happens always at a later time
compared to a pulse that crosses no barrier. That means for

an observer behind the barrier that one would not detect the
tunneled pulse earlier than the freely propagated one, in
agreement with causality.

IV. SUMMARY AND CONCLUSION

In Eq. ~3.5!, we have given an exact analytic expression
in the time domain for the causal Green’s function of a
model that describes an ideal case of electromagnetic tunnel-
ing. The structure of this function allows for a reduction to
those terms that describe only the pure tunneling effect with-
out the distortions caused by the waveguide. With this re-
duced Green’s function, we calculated the shape of transmit-
ted wave packets for truncated Gaussians as initial pulses.
The resulting pulse can be also Gaussian-like. In agreement
with the approximate result of Martin and Landauer@3# and
the experiments on microwaves by Enders and Nimtz@5#, the
time delay of the maximum of the pulse becomes nearly
independent of the thickness for sufficiently long barriers.
Furthermore, the variance of the transmitted packet decreases
with increasing barrier thickness. By examining the proper-
ties of the energy flow, we have found consistency of a su-
perluminal pulse maximum with the causality of Maxwell’s
theory.

Within this interpretation the energy of the transmitted
pulse can only originate from a connected part behind the
wave front of the initial wave packet because the integral
curves of the energy flow do not intersect each other. In this
sense, the Gaussian shape of the transmitted pulse can only
be interpreted as an amazing interference effect. Due to the
propagation of the wave front with the vacuum speed of
light, it is not possible to obtain a superluminal maximum if
the barrier thickness exceeds the distance between the maxi-
mum and the wave front. Thus, in the case of truncated wave
packets, the time delay of the maximum does not stay inde-
pendent of the thickness for all barrier lengths. In summary,
the results of the tunneling experiments can be obtained from
the causal Maxwell theory.
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